If it's not what You are looking for type in the equation solver your own equation and let us solve it.
324x^2-24x-6=0
a = 324; b = -24; c = -6;
Δ = b2-4ac
Δ = -242-4·324·(-6)
Δ = 8352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8352}=\sqrt{144*58}=\sqrt{144}*\sqrt{58}=12\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-12\sqrt{58}}{2*324}=\frac{24-12\sqrt{58}}{648} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+12\sqrt{58}}{2*324}=\frac{24+12\sqrt{58}}{648} $
| 50-7x²=4x-25 | | 7-3u=10u | | 3(2x-4)-6x=-12 | | 8x-9=-7x+3 | | -7b-7=-6b | | 1/2x-1/3=1/x | | -8s=-8-10s | | 180=-20+2x | | 1,5a-2=2,5 | | 8p-15=2p+33 | | -2d=-d+7 | | 0.2x-1=2x+I8 | | x/3-(x-2)/2=7/3 | | x+9+3x=15 | | (5x+3)+(2x+2)=180 | | 6+3(5x-10)=-4(-3x+9) | | 8m+13=59 | | 8(1)h=12+4(1)h | | f=18*C+32 | | 0.x=-8 | | c^2+4c+-14=0 | | 46+x=2(78+x) | | 5x2+10+3=0 | | 46+x=78+4x | | 240-20w=600-40w | | 4y+y=-8 | | x+x+2+x+2=2058 | | X^4+2x=20 | | -2x+x=69 | | x-(-3x-6)+7=2x-13 | | -12-2n+7n=6n-4n | | -0.9y+y=19 |